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Summary 

A numerical regression method, assisted by a least 
squares technique, is proposed to obtain thermodynamic 
and hydrodynamic parameters of polymer molecules via a 
direct comparison between experimental data and theor_e 
tical functions. This comparison is independent of the 
number oi" the experimental variables. The method also 
enables to decide if a selected set of theoretical equ_a 
tions fits satisfactorily the experimental results. 

Int r oduc tl on 

The thermodynamic and hydrodyn~nic treatment of ma 
cromolecular solutions is a very active field of inves 
tigation. When attention is directed to very dilute s_o 
lutions of randam coiled linear polymer molecules a lot 
of experimental results (molecular weight, radius of g~ 
ration, second virial coefficient, intrinsic viscosity, 
etc.) are available to be analyzed by means of different 
theoretical approaches which have the same underlying 
purpose: to describe equilibrium and transport solution 
properties in terms of polymer-solvent and polymer-poly 
mer interaction parameters. To obtain these parameters 
one has to take sufficient experimental values (~vhlch 
may be measured with different reliability) of a number 
of variables which are connected to each other by differ 
ent systems of equations (explicitly or not) and decide 
which of these systems, if any, give a satisfactory fit 
to the experimental results. 

It is well known that dilute polymer solution theo 
ry has to account not only for the interaction between 
Its constituents as any other solution theory but also 
for the average dimensions of the macromolecules in so- 
lution. This feature leads to the so called two param_e 
ter theory (YAMAKAWA, 1971). The manipulation of the 
experimental data to show how the different theoretical 
approaches work has to meet therefore the simultaneous 
verification of both the thermodyn~nic and transport 
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aspects , based on the situation that there are enough 
experimental data appropriately distributed in the meA 
sured molecular weig~range. 

To this end several procedures were proposed in the 
literature: for example to group some experimental re- 
sults to make a comparison ~ith the theoretical functions 
possible (YAMAK~VA, 1968); to linearize these functions 
allowing an easy ~rphical analysis (NORISUYE et al., 
1968; BF~RRY, 1966); to use graphical methods based on 
empirical laws (GLOCKNER, 198o); etc. All these methods 
have to circumvent the difficulty which prevents a di- 
rect comparison between measurements and theory. Gene- 
rally they are bounded to some requisites which depend 
on the particular mathematical form of the equations used. 

Here we propose a numerical method (Gauss' method, 
BARD, 1974) by which this direct comparison is possible 
without necessity of any change in the theoretical equa 
tions or use of any additional relationship and by sim~_l 
taneous use of all experimental results. 

0ut!ines of the method 

Let us assur~le that for a solution of a linear poly 
met the ~x~imental values of the radius of gyration 
Rg,e.(Rg ) / , the second virial coefficient A2,e and the 
intrinsic viscosity [~,e are known as a function of the 
molecular weight M. Within the frame of the two parsme- 
ter model theory calculated values Rg,c , A2,c and ~],c 
may be derived from the following structural equations: 

Rg,c = R(Ko,B,M J 

A2,c = A(Ko,B,M) (1) 

[~],c = ~ ( K o , B , ~ o , M )  
where Ko2~Rg~/M and B=~/ms 2 are the two parameters to 
be determined. $o is Flory's. v~scosity constant which we 
take as a third parameter, ~P~)o is the square of the 
unperturbed radius of gyration, and ~ is the binary clu_s 
tar integral of interaction between chain seg~ents of 
molecular weight ms. The explicit form of eqs. (1) depend 
on each theory bttt are always non linear. 

With initial assumed values of the parameters Eo, 
B and ~o we may calculate Rg,ci , A2,ci and ~],ci for 
each molecular weight Mi with the help of eqs. (1J. The 
Gauss method considers that the differences between the 
experimental and calculated values of Rg, A2 and [W] arise 
from the errors (~Ko, 6B and~$o) in the assumed values 
of the three parameters. 

According to a one term Taylor development the re- 
lations between the above differences and the parameter 
errors are given by 
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A Ri = a-~ ' / i  " '" + a-~')i  6B 

AAi = ~A) 8Ko + 8~ ) ~B 
aKo i i 

A Ei = aI.Co i i 

(2) 

+ a~Jol 

Eqs.(2) orovlde the new values of the parameters 
(Ko~ 8Ko, B+ 6B, ~o + a$o). With these a new set of cal 
culated values (Rg,c , A2,c andI77],c) are obtained thl~u@h 
eqs. (1) and the procedure repeated until the parameter 
values show no significant change. 

Actually there are N sets of experimental values 
and n parameters (here n = 3) to be determined (N~ n). 
Therefore it is necessary to use a regression method 
assisted by a least squares technique. In other words 
we try to minimize the sum of the squares of the dlfferen_ 
ces given by eqs. (2). Such a sum has an unsatisfactory 
property because we add rather different entities. To 
solve this problem it is only necessary to minimize the 
sum of the squares of the relative differences, i.e.: 

Rg,e A2,e [~l,e /i I ~-' 
where hR, hA and hE are numerical coefficients whlch,in 
a relative scale, allow to correct in case that some 
kind of measurement (say a) may be experimentally more 
reliable than other (say b) by putting ha > hb. 

Using the abbreviations Fk-R,A o7 E, with k--1,..,Z 
p~= ko, B or~o, with j=l,,..,n; eq.(3) may be written 

a very general way, 

s- ~ Z (4) 
i -1  k-1 \ Fk,e  

(L is the number of measured depenaent variables), the 
condition for a minimum being n equations of the form 

L AFk\ 
0- 8S--2 E E hk (5) a-TT/  i=l k=l 

Introducing eqs.(2) in (5) 
N L AFk\ @F k\ N L hkh aFkh ~ @Fk ~p~ (6) 

E ~ hk~)i~pj)i=i~=l ~ 2 -- Fk,e/IBPJ ~ 2Vl 8P~ i=l k-i * k-i 

(~=i,.. ,j,.,n). The n eqs.(6) allow to calculate the n 
values ~ with which a new set of parameters (~ ~PL ) 
are calculated to make a new iteration step as outlined 
before. 

For a specific application see the Appendix. 
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ADplication to some experimental results. 

We applied the method to data from several polymer- 
solvent systems found in the literature and compared the 
values of the parameters Ko and ~o to those measured ex- 
perimentally under theta conditions. 0nly self-consistent 
combinations of equations for the expansion factor ~ and 
the interpenetration function B h(E) were used (Y~AK~AV~A, 
1971; GLOCKNER, 198o). For each variable we also calcula 
ted the standard error of estimate 

S,k= Fk, (7) 

Fk,e /i 
which can be compared to the mean experimental relative 
error erel with which Fk.e was measured. S'k~erel means 
that the theoretical curve fits appropriately to the ex- 
perimental values. See table I. 

In table I it is seen that for some systems the va- 
lues of the parameters obtained agree with those deter- 
mined experimentally but for others a somewhat too high 
difference is found. This is probably because the theo- 
ries are not valid for high values of the excluded vo- 
lume parameter z. 

As an example we plotted in fig. I [~],e , A2,e and 
Rg,e against the molecular weight M of very high molecu- 
lar weight Polystyrene in benzene (MIYAKI et al., 1978; 
EINAGA et al., 1979), together with their experimental 
errors and the theoretical curves that best fitted the 

~ x2erlmental data. A quite good adjustment is found for 
]and Rg but for A2 a clear bias between theoretical 

curve and experimental values is found. This differences 
do not dissappear by use of reasonable values for the 
statistical weights hk. This means that the theoretical 
equations are incapable to describe appropriately the 
A2 - M relationship. 

We also applied this method but taking only Rg and 
A2 values. The parameters Ko and B calculated were simi- 
lar to those obtained by GLOCKNER (1980) by use of his 
graphical procedure. 

Naturally the method may be extended so as to em- 
brace any other experimental variable adequately des- 
cribed by theory (for example the diffusion and sedi- 
mentation coefficients, etc.). 
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FIGURE I . -  In t r ins ic  v iscos i ty ,  second v i r i a l  coef f ic ient ,  
radius of gyration of Polystyrene in benzene 
and the theoretical curves that best f i t  the 
experimental data, 

By use of vectorial notation and introducing the 
approx~ation 

AFk ~ in Fk, e (AI) 

~,e ~,o 
the n eqs. (6) may be written 

~ -i 
= v. ( ) (A2) 

"I .  10 -4 
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V : l , Z  ' 
k--i \Fkic J aPJ llJ 

and Q is a n x n matrix whose ele~aents are 
-, ,. I } , . .  -~ l ~ h~ . . . . . . .  J ,n 

i--i k-i 8PJ /i 8Pi / i  
As an example we take Flory-Krigbaum-Orofino (FK0) 

self consistent system of equations for the expansion 
factor 04 and the interpenetration function ~ h~E) (YAMA 
KA'~A, 1971) 

0( 5 - o( 3: c z (A4) 
h(~) _ In(l+o'z) 

-- Ot 

and a first term perturbatlve series for the viscosity 
expansion factor (YAMAKA%VA and TANAKA, 1967) 

0{~: 4- OlZ .. �9 1 4- (A5) 
where z is the well .known excluded volume p_arameter de- 
fined by z = (4q)-3/rB Ko -3 MII2 and ~- zl~3.- (A6) 

Given the following relationships (YA~KAV{A, 1971) 

A2 =B Na h(z) (AT) 

2 3 Ml12 
we derive [~] =[~]O 0(~:6312~ 0 KO 3 ~ 

Rg,c = Ko MIIr(I + a ~)i/2 

A2,c = B Na In(l + c'z) (AS) 
20'~ 

[~?],e = 63/2 ~ o Ko3(l + OlZ) M I/2 

and the following derivative equations: 

~ln R____l[1 3 c z ] __~in R 1 12 c ~ 1 
~Ko Ko 2+.5 c g @B = B +5 e g 

81nA 3(i+o ~) [ 1 ] 

eke Ko(1+2.5 e %) h(~) (i + c,~.) 

---V~InA- i [ i +o~ +--3a~] 
(Ag) v~ B(I+. 2.5 e %) h(~)(l ~ o'~) 2 

~In R @in A 81n E 1 
- -  -- - - - - - -  0 - - - -  

~o ~o ~o ~o 

~ln E (-3)FI + ClZ ] ~in, 1 [ ClZ ] 
@Ko Ko 5 1 + a!z ] ~B B 1 + OlZJ 
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